传能光纤长度对连续波单频光纤放大器 SBS 阈值特性的影响

 $\overline{mnc^{1,2}}$ 漆云凤¹ 苏 岑^{1,3} 刘 \overline{m}^1 周 军¹

1 中国科学院上海光学精密机械研究所,上海市全固态激光器与应用技术重点实验室,上海 201800

² 中国科学院大学,北京 100049

3 云南大学物理科学技术学院物理系,云南昆明 650091

摘要 受激布里渊散射(SBS)效应是影响连续波单频光纤激光放大器功率提升的重要因素,就传能光纤长度对连 续波单频全光纤激光放大器 SBS 阈值功率的影响进行了实验研究。采用线宽为 2.35 kHz 的非平面环形腔 (NPRO)结构种子光源,搭建了两级级联单频连续波全光纤激光放大器,通过改变主放大器增益光纤与输出光隔离 器之间传能光纤的长度,检测主放大器回光功率和光谱随输出激光功率的变化,分析了无源传能光纤长度对连续 波单频全光纤激光放大器 SBS 阈值功率的影响,实验结果与理论计算结果相符。

Influence of Transmitting Fiber Length on SBS Threshold of Continuous-Wave Single-Frequency All Fiber Amplifier

Hao Liyun^{1,2} Qi Yunfeng¹ Su Cen^{1,3} Liu Chi¹ Zhou Jun¹

¹ Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
 ² University of Chinese Academy of Sciences, Beijing 100049, China
 ³ Department of Physics, School of Physics Science and Technology, Yunnan University, Kunming, Yunnan 650091, China

Abstract Stimulated Brillouin scattering (SBS) is an important factor that affects the increase of output power of single-frequency fiber amplifier. The impactions of length of transmitting fiber on the SBS threshold power of continuous-wave single-frequency all fiber amplifier are experimentally studied. Two stage continuous-wave all fiber amplifier is set up with the seed line-width of 2.35 kHz. By changing the length of the transmitting fiber between the gain fiber and the output isolator, the power feedback and spectral feedback of amplifier as a function of output power are measured, and the impactions of the length of transmitting on SBS characteristics of all fiber single-frequency laser are analyzed. The experimental results match very well with the theoretically calculated results. **Key words** lasers; all fiber amplifier; single-frequency laser; stimulated Brillouin scattering

OCIS codes 140.3480; 060.2390; 060.2320; 290.5900

1 引

高功率单频光纤激光器与光纤放大器在相干合

成、非线性频率转化、相干探测及激光雷达等领域有 着广泛的应用^[1-5],基于主振荡-功率放大(MOPA)

收稿日期: 2013-02-08; 收到修改稿日期: 2013-04-17

基金项目:国家自然科学基金(60907045)、国家 863 计划(2011AA030201)

作者简介:郝丽云(1987—),女,硕士研究生,主要从事高功率光纤激光器及非线性频率变化方面的研究。

E-mail: haoliyun0801@163.com

言

导师简介:周 军(1972—),男,研究员,博士生导师,主要从事高功率光纤激光技术、准分子激光技术等方面的研究。 E-mail: junzhousd@mail.siom.ac. cn 结构的全光纤化光纤激光器,是单频光纤激光器实 现高功率输出的有效技术方案[6]。对于连续波单频 全光纤激光放大器来说,受激布里渊散射(SBS)是 影响其功率提升的关键限制因素。关于高功率连续 波单频全光纤激光放大器的 SBS 效应,国内很多研 究人员就有源光纤处理方面提出了一系列提高 SBS 阈值的方法。2012年,Karow等^[7]研究了单频光纤 放大器中的放大自发辐射(ASE)对 SBS 的影响。 同年,Zou 等[8] 研究了光子晶体光纤中的 SBS 现 象。2008年,Rothenberg等^[9]报道了通过对光纤激 光放大器中的增益光纤施加纵向张力提高 SBS 阈 值的方法。2010年,冷进勇等[10]报道了通过对增益 光纤非均匀控温提高 SBS 阈值的方法。但在连续波 单频全光纤放大器链路和实际应用中,均需要传能光 纤对功率放大后的单频激光进行传输,因此无源传能 光纤长度对连续波单频全光纤激光放大器 SBS 阈值 影响的研究也是一个较有意义的课题。

本文采用谱线宽度为 2.35 kHz 的种子光源,自 建了两级级联连续波单频全光纤激光放大器,通过改 变主放大器增益光纤与输出光隔离器之间传能光纤 的长度,测量了主放大器回光功率及光谱特性随激光 输出功率的变化,分析了传能光纤长度对单频光纤放 大器 SBS 阈值特性的影响,实验结果与理论计算结果 相符。在主放大器增益光纤为 2.5 m、传能光纤长度 为 2.0 m 时,在未采取其他任何 SBS 抑制措施的情况 下,在所能得到的增益范围内(放大器输出信号功率 为 16.77 W)未观测到 SBS 现象的发生。

2 实验装置

图 1 为实验所用的两级级联的连续波单频全光 纤放大器装置示意图。非平面环形腔(NPRO)结构 的种子源经光隔离器(ISO1)注入一级预放大器进 行预放大后,依次通过光隔离器 ISO2,1/99 的2×2 光纤分束合器 TAP,最终进入主放大器进行功率放 大。其中,各级之间信号光通过单模保偏(PM)光纤 传输,ISO1、ISO2 用于抑制光纤激光放大器中的寄 生振荡以保护激光放大器和种子光源,1/99的2× 2 TAP 用于监测注入主放大器中的信号光和功率 放大过程中由于 SBS 等生成的返回光。主放大器 由 2 个功率为 10 W、中心波长为 975 nm 的尾纤化激 光二极管(LD)通过 2×1 抽运光纤合束器和(2+1)×1 的保偏光纤合束器抽运,预放大器输出的功率为1W 的信号光通过(2+1)×1 保偏光纤合束器注入双包层 掺镱光纤(YDF)的纤芯,主放大器所用双包层光纤的 长度为 2.5 m, 纤芯和内包层直径分别为 10 µm 和 130 µm。功率放大后的信号光经与主放大增益光纤参 数相同的无源传能光纤(GDF)传输后,最终经光隔离 器 ISO3 输出。图 2 为传能光纤长度为 2.0 m 时,主放 大器输出信号光功率随抽运电流的变化关系图。图 3 为种子光源的光谱图,中心波长为1064.42 nm。 图 4(a)和(b)为采用零拍测量法^[11]测量的种子光和经 功率放大后(传能光纤长度为4.1 m,激光输出7.15 W) 输出激光的 3 dB 线宽,分别为 2.35 kHz 和2.46 kHz。 种子光经全光纤激光放大器放大后,由于功率放大过 程中随机相位的自发辐射光子叠加到信号光场中,引 起放大后激光谱线展宽但极不明显,经放大后激光的 线宽主要决定于种子光线宽特性。

实验中,通过控制主放大器中增益光纤与 ISO3 之间传能光纤的长度依次为 4.1、3、2、1 m,监测 1/99 TAP 中光纤 1 出口的回光功率和光谱对主放大器的 SBS 阈值进行研究,用 TAP 光纤 1 出口(1%端口) 回光功率的突变点及回光光谱中斯托克斯光 谱峰的出现来表征主放大器系统的SBS阈值点,

图 1 两级级联的连续波单频高功率全光纤激光放大器实验装置图

Fig. 1 Experimental design for two stage continuous-wave single-frequency all fiber high power amplifier

图 4 种子光及功率放大后的激光线宽的测量结果。(a)种子光源;(b)功率放大后激光 Fig. 4 Measurement results of linewidth of seed laser and signal after amplification. (a) Seed laser; (b) singnal after amplification

ŀ

连续波单频全光纤激光放大器中 3 SBS 阈值理论分析

SBS 是影响单频光纤激光器输出功率提高的重 要因素,一旦达到 SBS 阈值,SBS 将把绝大部分输入 功率转换给后向斯托克斯波,对整个光路系统造成危 害。SBS 过程可以经典地描述为抽运波、斯托克斯波 通过声波进行的非线性相互作用。抽运波通过电致 伸缩产生声波,引起介质的周期性调制,并被形成的 折射率光栅布拉格衍射频率下移而形成斯托克斯 波^[12]。频移量由非线性介质决定,对于所用的石英 介质的光纤激光器,波长在 1064 nm 附近,频移量表 现为 0.06 nm。考虑抽运谱线宽度(Δν_b)远小于布里 渊线宽(Δ_ν)的情况,连续波或准连续波抽运条件下 抽运波和斯托克斯波的传输方程可简化表示为(设抽 运波和斯托克斯波有相同的光纤损耗 $\alpha_b = \alpha_s = \alpha$)

$$\frac{\mathrm{d}I_{\mathrm{s}}}{\mathrm{d}z} = -g_{\mathrm{B}}I_{\mathrm{P}}I_{\mathrm{s}} + \alpha I_{\mathrm{s}}, \qquad (1)$$

$$\frac{\mathrm{d}I_{\mathrm{p}}}{\mathrm{d}z} = -g_{\mathrm{B}}I_{\mathrm{P}}I_{\mathrm{s}} - \alpha I_{\mathrm{p}}, \qquad (2)$$

$$\frac{\Pi_{\rm P}}{\mathrm{d}z} = -g_{\rm B}I_{\rm P}I_{\rm s} - \alpha I_{\rm p}, \qquad (2)$$

式中 I_s, I_p 分别为斯托克斯光及抽运光强度, g_B 为 布里渊区增益峰值,z为沿光纤的位置坐标。忽略抽 运消耗,将 $I_{p}(z) = I_{p}(0) \exp(-\alpha z)$ 代人方程(1)并 对其在整个光纤长度 L 上积分, 斯托克斯波强度按 (3) 式呈指数上升趋势

$$I_{\rm s}(0) = I_{\rm s}(L) \exp(g_{\rm B}P_0 L_{\rm eff}/A_{\rm eff} - \alpha L), \quad (3)$$

$$\mathbf{A}_{\rm eff} = \Gamma^2 \pi a^2 \,, \tag{4}$$

$$L_{\rm eff} = \frac{1}{\alpha} [1 - \exp(-\alpha L)], \qquad (5)$$

式中 A_{eff}、L_{eff} 为有效的光纤线芯面积和有效光纤长 度, α 为信号光波的散射损耗,a为纤芯半径, Γ 为模 场面积与纤芯面积之比(一般取 0.8),L 为光纤 长度。

受激布里渊散射阈值定义为在光纤的输出端斯 托克斯功率与抽运功率相等时的入射抽运功率。求 解得,临界抽运功率 $P_{\rm er}$ 处的布里渊区阈值为

$$P_{\rm cr} = \frac{21 \cdot A_{\rm eff}}{g_{\rm B} \cdot L_{\rm eff}},\tag{6}$$

对于本研究所用的实验系统,SBS 阈值功率随光纤

长度变化的计算结果如图 5 所示,在光纤长度为 3.0 m时(传能光纤长度为0),系统的 SBS 阈值功率 为 28.5 W,随着光纤长度的增加,系统的 SBS 阈值 功率急剧下降,当光纤长度为10 m时(传能光纤长 度为 7 m),系统的 SBS 阈值功率仅为 8.6 W,随着 光纤长度的继续增加,SBS 阈值继续降低但相对缓 慢。光纤的长度分别为 7.1、6、5、4 m(对应传能光 纤长度为 4.1、3、2、1 m)时,系统的 SBS 阈值功率分 别为 12.15、14.26、16.95、21.1 W。

4 实验结果分析

保持功率主放大器增益光纤与 ISO3 之间的传能 光纤长度为 4.1 m,在 TAP 光纤1 出口检测到的回光 功率随功率主放大器抽运电流的变化关系如图 6 黑 线所示,主放大器回光功率在驱动电流约为6.5 A时 陡然上升,对应输出信号光功率为 8.65 W(SBS 阈值 点)。TAP 光纤1 出口的回光光谱(主放大器增益光 纤与 ISO3 之间传能光纤的长度为 4.1 m)如图 7 所 示,其中黑色线为种子光源的光谱线,在抽运电流为 6 A 时,回光光谱中信号光中心波长 1064.42 nm 右 侧 0.06 nm 处出现一个小侧峰,此时稍微加大电流, 后向 散射光能量迅速地增加 由 信号光谱峰 1064.42 nm向 1064.48 nm 的斯托克斯光谱峰转移。

截短功率主放大器增益光纤和 ISO3 之间的传 能光纤,重复监测传能光纤长度分别为 3、2、1 m时 TAP 光纤 1 出口回光功率随抽运电流的变化关系, 得到不同传能光纤长度下回光功率随抽运电流的变 化关系如图 6 所示。随着传能光纤的长度由 4.1 m 缩短为 3 m,功率主放大器的 SBS 阈值点电流由 6.5 A提高到 8 A,对应 SBS 阈值功率由 8.65 W 提 高为 12 W。考虑到 ISO3 的透射率为 80%,实验结 果与理论计算值 11.1 W 和 14.6 W 符合较好。当

图 6 传能光纤不同长度时回光功率随电流的变化 Fig. 6 Feedback power as a function of current with different lengths of transfer fiber

图 7 传能光纤长度为 4.1 m 时回光光谱 Fig. 7 Spectra of light feedback with transmitting fiber length of 4.1 m

传能光纤长度分别为2m和1m时,在抽运电流达 到最大值(放大后激光功率为16.77W)时,如图6 所示,没有SBS阈值点出现。

可见,在高功率连续波单频光纤放大器设计和 实验中,除要选择合适抽运 LD 和有源光纤,并对有 源光纤的长度进行优化及采取适当的 SBS 抑制措 施外,对传能光纤的长度也应根据实际需要合理优 化,如尽可能截短光隔离器、光纤合束器等无源器件 尾纤的长度,以满足高功率单频光纤放大器在研制 和应用中的功率要求。

5 结 论

以谱线线宽为 2.35 kHz 的 NPRO 结构的固体 激光器为种子光源,建立了两级级联的掺镱连续波 单频全光纤激光放大器,研究了传能光纤长度对单 频光纤放大器 SBS 阈值功率的影响,实验结果与理 论计算符合较好。在传能光纤长度为 2 m 时,获得 了 16.77 W 的单频激光输出,继续增大抽运功率, 该光纤放大器的单频输出功率还可继续提升。实验 结果表明,在单频连续波光纤激光放大器设计和实验中,除要选择合适的抽运 LD 有源光纤,并对有源 光纤的长度进行优化及采取适当的 SBS 抑制措施 外,对传能光纤的长度也应根据实际需要合理优化, 如尽可能截短光隔离器、光纤合束器等无源器件尾 纤的长度,以提高系统的 SBS 阈值,满足高功率单 频光纤放大器在研制和应用中的功率要求。

参考文献

- Zhou Jun, He Bing, Xue Yuhao, et al.. Study on passive coherent beam combination technology of high power fiber laser arrays [J]. Acta Optica Sinica, 2011, 31(9): 0900129.
 周 军,何 兵,薛宇豪,等.高功率光纤激光阵列被动相干组
- 束技术研究 [J]. 光学学报, 2011, 31(9): 0900129. 2 Li Zhen, Zhou Jun, He Bing, *et al*.. Coherent beam combination of passive phase locking of an array of three fiber lasers in one dimension by a ring cavity [J]. Acta Optica Sinica, 2010, 30

(11): 3209-3214.
李 震,周 军,何 兵,等.环形腔被动锁相一维三路光纤激 光相干组束研究[J].光学学报,2010,30(11): 3209-3214.

- 3 T S Y Imai, H Masuda, N Eguchi, *et al.*. Efficient 2th and 4th harmonic generation of a single-frequency continuous-wave fiber amplifier [J]. Opt Express, 2008,16(3): 1546-1551.
- 4 R L Savage Jr, P J King, S U Seel. Highly-stabilized 10-watt Nd: YAG laser for the laser interferometer gravitational-wave observatory (LIGO) [J]. Laser Physics, 1998, 8(3): 679-685.
- 5 Zhang Haiyang, Zhao Changming, Jiang Qijun, *et al.*. Laser dection on micro Doppler effect in coherent ladar [J]. Chinese J Lasers, 2008, 35(12): 1981-1985.

张海洋,赵长明,蒋奇君,等.基于相干激光雷达的激光微多普

勒探测[J]. 中国激光, 2008, 35(12): 1981-1985.

- 6 Wang Xiaolin, Zhou Pu, Xiao Hu, et al.. Narrow linewidth all-fiber laser with 666 W power output [J]. High Power Laser and Particle Beams, 2012, 24(6); 1261-1262.
 王小林,周 朴,肖 虎,等. 窄线宽全光纤激光器实现 666 W 高功率输出[J]. 强激光与粒子束, 2012, 24(6); 1261-1262.
- 7 M Karow, J Neumann, D Kracht, *et al.*. Impact of amplified spontaneous emission on Brillouin scattering of a single-frequency signal [J]. Opt Express, 2012, 20(10): 10572-10582.
- 8 Weiwen Zou, Zuyuan He, Kazuo Hotate. Experimental investigation on Brillouin scattering property in highly nonlinear photonic crystal fiber with hybrid core [J]. Opt Express, 2012, 20(10): 11083-11090.
- 9 J E Rothenberg, P AThielen, M Wickham, *et al.*. Suppression of stimulated Brillouin scattering in single-frequency multikilowatt fiber amplifiers [C]. SPIE, 2008, 6873: 687300.
- 10 Leng Jinyong, Liu Chi, Guo Shaofeng, et al.. Influence of temperature distribution on stimulated Brillouin scattering in high power single frequency fiber amplifiers [J]. Chinese J Lasers, 2010, 37(10): 2491-2496.

冷进勇,刘 驰,郭少锋,等.高功率单频光纤放大器中温度分 布对受激布里渊散射的影响[J].中国激光,2010,37(10): 2491-2496.

- 11 Yu Benli, Qian Jingren, Yang Yinghai, et al.. Homodyne method for measuring narrow linewidth lasers [J]. Chinese J Lasers, 2001, 28(4): 351-354.
 俞本立,钱景仁,杨瀛海,等. 窄线宽激光的零拍测量法[J]. 中 国激光, 2001, 28(4): 351-354.
- 12 Govind P Agrawal. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics [M]. Jian Dongfang, Yu ZhenHong, et al.. Transl. Beijing: Electronic Industry Press, 2002. 222-228.

Govind P Agrawal. 非线性光纤光学原理及应用 [M]. 贾东方, 余震虹, 等 译. 北京: 电子工业出版社, 2002. 222-228.

栏目编辑: 宋梅梅